Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Transl Cancer Res ; 13(3): 1225-1240, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38617516

RESUMO

Background: KLRB1 is downregulated in various cancer types. Nevertheless, the specific involvement of KLRB1 in the context of breast cancer (BRCA) has not been fully elucidated. This research aimed to explore its clinical value in BRCA. Methods: A dataset comprising 1,109 BRCA samples and 113 healthy samples was retrieved from The Cancer Genome Atlas (TCGA) database to establish the association between KLRB1 expression and pan-cancer. Subsequently, an analysis was executed to explore the link between KLRB1 and BRCA. T-tests and Chi-squared tests were conducted to assess the expression of KLRB1 and its clinical implications in BRCA. The prognosis-predictive value of KLRB1 in BRCA was assessed using the Kaplan-Meier method and Cox regression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses screened biological pathways to analyze the association between the immune infiltration level and KLRB1 expression in BRCA. Lastly, the conclusion was validated through quantitative polymerase chain reaction (qPCR), immunohistochemistry (IHC), and Cell Counting Kit-8 (CCK8) assays. Results: KLRB1 exhibited low expression in patients with BRCA. Furthermore, KLRB1 demonstrated strong diagnostic potential, as indicated by an area under curve (AUC) of 0.712. Kaplan-Meier survival and Cox regression analyses indicated that attenuated expression of KLRB1 was independently linked to unfavorable clinical outcomes. GO and KEGG enrichment analyses were performed on the top 10 genes that exhibited positive and negative correlations with KLRB1. Analysis of genes positively correlated with KLRB1 revealed associations with signaling receptor activator activity, lymphocyte proliferation, mononuclear cell proliferation, leukocyte proliferation, receptor-ligand activity, immunoglobulin binding, and hematopoietic cell lineage signaling pathway. KLRB1 expression exhibited significant correlations with all immune cells. Furthermore, qPCR and IHC outcomes demonstrated that KLRB1 was significantly downregulated in BRCA tissues. CCK8 findings showed a decrease in the proliferation of BRCA MCF7 cells upon knockout of KLRB1. Conclusions: This research investigated the mechanism and potential therapeutic target of the KLRB1 gene in BRCA. By analyzing the expression and function of the KLRB1 gene, the study aims to find its significant role in the onset and progression of BRCA. This research endeavors to offer novel strategies and approaches for treating BRCA.

2.
Environ Res ; 251(Pt 2): 118679, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518904

RESUMO

Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (µmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.

3.
J Med Virol ; 96(4): e29567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546093

RESUMO

Emerging pathogenic tick-borne viruses (TBVs) have attracted a great deal of attention due to their significant impact on human and animal health. A novel orthonairovirus named Dadong virus (DDV) was isolated from Haemaphysalis concinna ticks in the Changbai Mountain region on the China-North Korea border. DDV can induce cytopathic effects in mammalian and human cell lines. Phylogenetic analysis showed that it belongs to the genus Orthonairovirus, family Nairoviridae, exhibiting 72.4%-81.3% nucleic acid identity to Tofla orthonairovirus, known to cause lethal infection in IFNAR KO mice. The first serological evidence of DDV circulating in cattle and mice was also obtained, with 4.0% (1/25) of cattle and 2.27% (1/44) of mice seropositive for DDV. Further investigations, including serological surveys using human samples, are required to assess the public health risk posed by DDV.


Assuntos
Vírus de RNA , Carrapatos , Vírus , Animais , Humanos , Bovinos , Camundongos , República Democrática Popular da Coreia , Filogenia , Mamíferos
4.
Front Public Health ; 12: 1297007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435296

RESUMO

Background: With the rapid advancement of the One Health approach, the transmission of human infectious diseases is generally related to environmental and animal health. Coronavirus disease (COVID-19) has been largely impacted by environmental factors regionally and globally and has significantly disrupted human society, especially in low-income regions that border many countries. However, few research studies have explored the impact of environmental factors on disease transmission in these regions. Methods: We used the Xinjiang Uygur Autonomous Region as the study area to investigate the impact of environmental factors on COVID-19 variation using a dynamic disease model. Given the special control and prevention strategies against COVID-19 in Xinjiang, the focus was on social and environmental factors, including population mobility, quarantine rates, and return rates. The model performance was evaluated using the statistical metrics of correlation coefficient (CC), normalized absolute error (NAE), root mean square error (RMSE), and distance between the simulation and observation (DISO) indices. Scenario analyses of COVID-19 in Xinjiang encompassed three aspects: different population mobilities, quarantine rates, and return rates. Results: The results suggest that the established dynamic disease model can accurately simulate and predict COVID-19 variations with high accuracy. This model had a CC value of 0.96 and a DISO value of less than 0.35. According to the scenario analysis results, population mobilities have a large impact on COVID-19 variations, with quarantine rates having a stronger impact than return rates. Conclusion: These results provide scientific insight into the control and prevention of COVID-19 in Xinjiang, considering the influence of social and environmental factors on COVID-19 variation. The control and prevention strategies for COVID-19 examined in this study may also be useful for the control of other infectious diseases, especially in low-income regions that are bordered by many countries.


Assuntos
COVID-19 , Doenças Transmissíveis , Saúde Única , Animais , Humanos , COVID-19/epidemiologia , Simulação por Computador , Pobreza
5.
Acta Trop ; 254: 107130, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38278313

RESUMO

Xinjiang has been one of the high incidence areas of pulmonary tuberculosis (PTB) in China. Besides being infected by direct contacting with active PTB individuals (direct infection), the susceptible would be infected because of the exposure to the environment contaminated by Mycobacterium tuberculosis (indirect infection). Active PTB individuals include not only the smear-positive PTB (PTB+) but also the smear-negative PTB (PTB-) who are infectious due to their ability to release tiny Mycobacterium tuberculosis particles even in the absence of visible Mycobacterium tuberculosis in sputum. By taking account of direct/indirect infection and the difference between PTB+ and PTB- individuals in transmission capability, a periodic dynamical PTB transmission model is proposed. The model is fitted to the newly monthly PTB+ and PTB- cases in Xinjiang from 2008 to 2017 by Markov Chain Monte Carlo algorithm. Moreover, global sensitivity analysis is constructed to address the uncertainty of some key parameters by using Latin hypercube sampling and partial rank correlation coefficient methods. Basic reproduction number R0 for PTB transmission in Xinjiang is estimated to be 2.447 (95% CrI:(1.203, 3.844)), indicating that PTB has been prevalent in Xinjiang over the study period. Our results suggest that reducing the direct/indirect transmission rates, early screening, isolating and treating the latent, PTB+ and PTB- individuals, and enhancing the clearance of Mycobacterium tuberculosis in the environment could more effectively control PTB transmission in Xinjiang. The model fits the reported PTB data well and achieves acceptable prediction accuracy. We believe that our model can provide heuristic support for controlling PTB transmission in Xinjiang.

6.
Viruses ; 16(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257803

RESUMO

Wuxiang virus (WUXV) is the first sandfly-borne Phlebovirus isolated from Phlebotomus chinensis collected in China and has been established as a consistent viral presence in the local sandfly populations of both Wuxiang County and Yangquan City. However, its distribution in the Shanxi Province remains unclear. In this study, three novel WUXV strains were isolated from sandflies collected from Jiexiu City, Shanxi Province, China, in 2022. Subsequently, whole-genome sequences of these novel strains were generated using next-generation sequencing. The open reading frame (ORF) sequences of the WUXV strains from the three locations were subjected to gene analysis. Phylogenetic analysis revealed that WUXV belongs to two distinct clades with geographical differences. Strains from Wuxiang County and Yangquan City belonged to clade 1, whereas strains from Jiexiu City belonged to clade 2. Reassortment and recombination analyses indicated no gene reassortment or recombination between the two clades. However, four reassortments or recombination events could be detected in clade 1 strains. By aligning the amino acid sequences, eighty-seven mutation sites were identified between the two clades, with seventeen, sixty, nine, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Additionally, selection pressure analysis identified 17 positively selected sites across the entire genome of WUXV, with two, thirteen, one, and one site(s) in the proteins RdRp, M, NSs, and N, respectively. Notably, sites M-312 and M-340 in the M segment not only represented mutation sites but also showed positive selective pressure effects. These findings highlight the need for continuous nationwide surveillance of WUXV.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Psychodidae , Animais , Filogenia , China/epidemiologia , Sequência de Aminoácidos , RNA Polimerase Dependente de RNA
7.
J Hazard Mater ; 465: 133184, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064944

RESUMO

The ingestion of fruits containing perfluoroalkyl acids (PFAAs) presents potential hazards to human health. This study aimed to fill knowledge gaps concerning the tissue-specific distribution patterns and bioaccumulation behavior of PFAAs and their isomers, alternatives, and precursors (collectively as per-/polyfluoroalkyl substances, PFASs) within citrus trees growing in contaminated fields. It also assessed the potential contribution of precursor degradation to human exposure risk of PFASs. High concentrations of total target PFASs (∑PFASstarget, 92.45-7496.16 ng/g dw) and precursors measured through the total oxidizable precursor (TOP) assay (130.80-13979.21 ng/g dw) were found in citrus tree tissues, and short-chain PFASs constituted the primary components. The total PFASs concentrations followed the order of leaves > fruits > branches, bark > wood, and peel > pulp > seeds. The average contamination burden of peel (∑PFASstarget: 57.75%; precursors: 71.15%) was highest among fruit tissues. Bioaccumulation factors (BAFs) and translocation potentials of short-chain, branched, or carboxylate-based PFASs exceeded those of their relatively hydrophobic counterparts, while ether-based PFASs showed lower BAFs than similar PFAAs in above-ground tissues of citrus trees. In the risk assessment of residents consuming contaminated citruses, precursor degradation contributed approximately 36.07% to total PFASs exposure, and therefore should not be ignored.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Árvores , Bioacumulação , Fluorocarbonos/análise , Poluentes Químicos da Água/química , Medição de Risco , Ácidos Alcanossulfônicos/análise , Monitoramento Ambiental
8.
Biochem Biophys Res Commun ; 695: 149401, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154264

RESUMO

Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.


Assuntos
Hipercalcemia , Hipocalcemia , Anticorpos de Domínio Único , Humanos , Receptores de Detecção de Cálcio/metabolismo , Cálcio/metabolismo , Hipocalcemia/genética , Hipercalcemia/genética
9.
Front Public Health ; 11: 1228564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881346

RESUMO

Background: The COVID-19 pandemic, which began in late 2019, has resulted in the devastating collapse of the social economy and more than 10 million deaths worldwide. A recent study suggests that the pattern of COVID-19 cases will resemble a mini-wave rather than a seasonal surge. In general, COVID-19 has more severe impacts on cities than on rural areas, especially in cities with high population density. Methods: In this study, the background situation of COVID-19 transmission is discussed, including the population number and population density. Moreover, a widely used time series autoregressive integrated moving average (ARIMA) model is applied to simulate and forecast the COVID-19 variations in the six cities. We comprehensively analyze the dynamic variations in COVID-19 in the four first-tier cities of mainland China (BJ: Beijing, SH: Shanghai, GZ: Guangzhou and SZ: Shenzhen), Hong Kong (HK), China and Singapore (SG) from 2020 to 2022. Results: The major results show that the six cities have their own temporal characteristics, which are determined by the different control and prevention measures. The four first-tier cities of mainland China (i.e., BJ, SH, GZ, and SZ) have similar variations with one wave because of their identical "Dynamic COVID-19 Zero" strategy and strict Non-Pharmaceutical Interventions (NPIs). HK and SG have multiple waves primarily caused by the input cases. The ARIMA model has the ability to provide an accurate forecast of the COVID-19 pandemic trend for the six cities, which could provide a useful approach for predicting the short-term variations in infectious diseases.Accurate forecasting has significant value for implementing reasonable control and prevention measures. Conclusions: Our main conclusions show that control and prevention measures should be dynamically adjusted and organically integrated for the COVID-19 pandemic. Moreover, the mathematical models are proven again to provide an important scientific basis for disease control.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , China/epidemiologia , Hong Kong/epidemiologia , Cidades/epidemiologia , Pandemias , Singapura/epidemiologia
10.
Math Biosci Eng ; 20(8): 14596-14615, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37679150

RESUMO

A transmission dynamics model with the logistic growth of cystic echinococcus in sheep was formulated and analyzed. The basic reproduction number was derived and the results showed that the global dynamical behaviors were determined by its value. The disease-free equilibrium is globally asymptotically stable when the value of the basic reproduction number is less than one; otherwise, there exists a unique endemic equilibrium and it is globally asymptotically stable. Sensitivity analysis and uncertainty analysis of the basic reproduction number were also performed to screen the important factors that influence the spread of cystic echinococcosis. Contour plots of the basic reproduction number versus these important factors are presented, too. The results showed that the higher the deworming rate of dogs, the lower the prevalence of echinococcosis in sheep and dogs. Similarly, the higher the slaughter rate of sheep, the lower the prevalence of echinococcosis in sheep and dogs. It also showed that the spread of echinococcosis has a close relationship with the maximum environmental capacity of sheep, and that they have a remarkable negative correlation. This reminds us that the risk of cystic echinococcosis may be underestimated if we ignore the increasing number of sheep in reality.


Assuntos
Equinococose , Animais , Ovinos , Cães , Número Básico de Reprodução , Equinococose/epidemiologia , Equinococose/veterinária , Incerteza
11.
ACS Biomater Sci Eng ; 9(8): 4770-4780, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37503882

RESUMO

Biomimetic nanostructures with bactericidal performance have become the research focus in constructing sterilization surfaces, but the mechano-bactericidal mechanism is still not fully understood, especially for the hierarchical nanostructure arrays with different heights. Herein, the interaction between Escherichia coli cells and nanostructure arrays was simulated by finite element, and the initial rupture points, i.e., critical action sites, of bacterial cells and the effects of nanostructure geometries on the cell rupture speed were analyzed based on the mechano-response of Escherichia coli cells on flat (identical heights) and hierarchical nanostructure arrays. The critical action sites of bacterial cells on nanostructure arrays are all at the three-phase junction zone of cell-liquid-nanostructure, but they are slightly shifted by the height difference ΔH of nanostructures on hierarchical nanopillar (NP)/nanosheet (NS) arrays, where the NP is higher than the NS. When ΔH < 20 nm, the site nears the NS corners, and when ΔH ≥ 20 nm, the site is consistent with that of the NP/NP array, i.e., the site locates at the three-phase junction zone of cell-liquid-high NP. In addition, except for decreasing the NP diameter, the NS thickness/width, or properly increasing the nanostructure spacing, the cell rupture can be accelerated via increasing the ΔH of nanostructures. ΔH = 40 nm is distinguished as the boundary for the effect of nanostructure ΔH on the cell rupture speed. When ΔH < 40 nm, the cell rupture speed rapidly increases as the ΔH increases; when ΔH ≥ 40 nm, the cell rupture speed reaches the maximum value and remains stable. This study provides a new strategy on how to design high-efficiency bactericidal surfaces.


Assuntos
Nanoestruturas , Análise de Elementos Finitos , Propriedades de Superfície , Nanoestruturas/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química
12.
Math Biosci Eng ; 20(7): 11644-11655, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37501413

RESUMO

In this paper, a stochastic SIB(Susceptible-Infected-Vibrios) cholera model with saturation recovery rate and Ornstein-Uhlenbeck process is investigated. It is proved that there is a unique global solution for any initial value of the model. Furthermore, the sufficient criterion of the stationary distribution of the model is obtained by constructing a suitable Lyapunov function, and the expression of probability density function is calculated by the same condition. The correctness of the theoretical results is verified by numerical simulation, and the specific expression of the marginal probability density function is obtained.

13.
Adv Sci (Weinh) ; 10(26): e2300834, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37428471

RESUMO

Cigarette smoke aggravates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the underlying mechanisms remain unclear. Here, they show that benzo[a]pyrene in cigarette smoke extract facilitates SARS-CoV-2 infection via upregulating angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Benzo[a]pyrene trans-activates the promoters of ACE2 and TMPRSS2 by upregulating nuclear receptor subfamily 4 A number 2 (NR4A2) and promoting its binding of NR4A2 to their promoters, which is independent of functional genetic polymorphisms in ACE2 and TMPRSS2. Benzo[a]pyrene increases the susceptibility of lung epithelial cells to SARS-CoV-2 pseudoviruses and facilitates the infection of authentic Omicron BA.5 in primary human alveolar type II cells, lung organoids, and lung and testis of hamsters. Increased expression of Nr4a2, Ace2, and Tmprss2, as well as decreased methylation of CpG islands at the Nr4a2 promoter are observed in aged mice compared to their younger counterparts. NR4A2 knockdown or interferon-λ2/λ3 stimulation downregulates the expression of NR4A2, ACE2, and TMPRSS2, thereby inhibiting the infection. In conclusion, benzo[a]pyrene enhances SARS-CoV-2 infection by boosting NR4A2-induced ACE2 and TMPRSS2 expression. This study elucidates the mechanisms underlying the detrimental effects of cigarette smoking on SARS-CoV-2 infection and provides prophylactic options for coronavirus disease 2019, particularly for the elderly population.


Assuntos
COVID-19 , Idoso , Masculino , Humanos , Animais , Camundongos , COVID-19/metabolismo , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Benzo(a)pireno/metabolismo , Pulmão/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
14.
J Struct Biol ; 215(3): 107996, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419228

RESUMO

The evolving SARS-CoV-2 Omicron strain has repeatedly caused widespread disease epidemics, and effective antibody drugs continue to be in short supply. Here, we identified a batch of nanobodies with high affinity for receptor binding domain (RBD) of SARS-CoV-2 spike protein, separated them into three classes using high performance liquid chromatography (HPLC), and then resolved the crystal structure of the ternary complexes of two non-competing nanobodies (NB1C6 and NB1B5) with RBD using X-ray crystallography. The structures showed that NB1B5 and NB1C6 bind to the left and right flank of the RBD, respectively, and that the binding epitopes are highly conserved cryptic sites in all SARS-CoV-2 mutant strains, as well as that NB1B5 can effectively block the ACE2. These two nanobodies were covalently linked into multivalent and bi-paratopic formats, and have a high affinity and neutralization potency for omicron, potentially inhibiting viral escape. The binding sites of these two nanobodies are relatively conserved, which help guide the structural design of antibodies targeting future variants of SARS-CoV-2 to combat COVID-19 epidemics and pandemics.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2/genética , Anticorpos , Epitopos/genética , Anticorpos Neutralizantes
15.
J Neuroinflammation ; 20(1): 157, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391731

RESUMO

BACKGROUND: Neuroinflammation and microglia play critical roles in the development of depression. Cluster of differentiation 200 (CD200) is an anti-inflammatory glycoprotein that is mainly expressed in neurons, and its receptor CD200R1 is primarily in microglia. Although the CD200-CD200R1 pathway is necessary for microglial activation, its role in the pathophysiology of depression remains unknown. METHODS: The chronic social defeat stress (CSDS) with behavioral tests were performed to investigate the effect of CD200 on the depressive-like behaviors. Viral vectors were used to overexpress or knockdown of CD200. The levels of CD200 and inflammatory cytokines were tested with molecular biological techniques. The status of microglia, the expression of BDNF and neurogenesis were detected with immunofluorescence imaging. RESULTS: We found that the expression of CD200 was decreased in the dentate gyrus (DG) region of mice experienced CSDS. Overexpression of CD200 alleviated the depressive-like behaviors of stressed mice and inhibition of CD200 facilitated the susceptibility to stress. When CD200R1 receptors on microglia were knocked down, CD200 was unable to exert its role in alleviating depressive-like behavior. Microglia in the DG brain region were morphologically activated after exposure to CSDS. In contrast, exogenous administration of CD200 inhibited microglia hyperactivation, alleviated neuroinflammatory response in hippocampus, and increased the expression of BDNF, which in turn ameliorated adult hippocampal neurogenesis impairment in the DG induced by CSDS. CONCLUSIONS: Taken together, these results suggest that CD200-mediated alleviation of microglia hyperactivation contributes to the antidepressant effect of neurogenesis in dentate gyrus in mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Microglia , Animais , Camundongos , Hipocampo , Neurogênese , Giro Denteado
16.
Protein Expr Purif ; 207: 106268, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023993

RESUMO

As one of the receptors of the TAM family, AXL plays a vital role in stem cell maintenance, angiogenesis, immune escape of viruses and drug resistance against tumors. In this study, the truncated extracellular segment containing two immunoglobulin-like domains of human AXL (AXL-IG), which has been confirmed to bind growth arrest specific 6 (GAS6) by structural studies [1], was expressed in a prokaryotic expression system and then purified. Immunizing camelid with the purified AXL-IG as antigen could lead to the production of unique nanobodies composed of only variable domain of heavy chain of heavy-chain antibody (VHH), which are around 15 kD and stable. We screened out a nanobody A-LY01 specific binding to AXL-IG. We further determined the affinity of A-LY01 to AXL-IG and revealed that A-LY01 could specifically recognize full-length AXL on the surface of HEK 293T/17 cells. Our study provides appropriate support for the development of diagnostic reagents and antibody therapeutics targeting AXL.


Assuntos
Escherichia coli , Neoplasias , Humanos , Escherichia coli/genética , Anticorpos , Cadeias Pesadas de Imunoglobulinas
17.
Adv Exp Med Biol ; 1407: 45-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920691

RESUMO

Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.


Assuntos
Antígenos , Pseudotipagem Viral , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Testes de Neutralização/métodos
18.
Infect Dis Poverty ; 12(1): 18, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918974

RESUMO

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and the Omicron variant presents a formidable challenge for control and prevention worldwide, especially for low- and middle-income countries (LMICs). Hence, taking Kazakhstan and Pakistan as examples, this study aims to explore COVID-19 transmission with the Omicron variant at different contact, quarantine and test rates. METHODS: A disease dynamic model was applied, the population was segmented, and three time stages for Omicron transmission were established: the initial outbreak, a period of stabilization, and a second outbreak. The impact of population contact, quarantine and testing on the disease are analyzed in five scenarios to analysis their impacts on the disease. Four statistical metrics are employed to quantify the model's performance, including the correlation coefficient (CC), normalized absolute error, normalized root mean square error and distance between indices of simulation and observation (DISO). RESULTS: Our model has high performance in simulating COVID-19 transmission in Kazakhstan and Pakistan with high CC values greater than 0.9 and DISO values less than 0.5. Compared with the present measures (baseline), decreasing (increasing) the contact rates or increasing (decreasing) the quarantined rates can reduce (increase) the peak values of daily new cases and forward (delay) the peak value times (decreasing 842 and forward 2 days for Kazakhstan). The impact of the test rates on the disease are weak. When the start time of stage II is 6 days, the daily new cases are more than 8 and 5 times the rate for Kazakhstan and Pakistan, respectively (29,573 vs. 3259; 7398 vs. 1108). The impact of the start times of stage III on the disease are contradictory to those of stage II. CONCLUSIONS: For the two LMICs, Kazakhstan and Pakistan, stronger control and prevention measures can be more effective in combating COVID-19. Therefore, to reduce Omicron transmission, strict management of population movement should be employed. Moreover, the timely application of these strategies also plays a key role in disease control.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Cazaquistão/epidemiologia , Paquistão/epidemiologia
19.
Biosens Bioelectron ; 226: 115132, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791617

RESUMO

For the diagnosis and therapy of small cell lung cancer (SCLC), the accurate and sensitive determination of neuron-specific enolase (NSE) content is crucial. This work outlines a dual-quenching electrochemiluminescence resonance energy transfer (ECL-RET) immunosensor based on the double quenching effects of iron base metal organic frameworks (FeMOFs) loaded with small sized CuO nanoparticles (FeMOFs-sCuO) towards CoPd nanoparticles (CoPdNPs) enhanced porous g-C3N4 (P-C3N4-CoPdNPs). To be specific, we prepared a porous g-C3N4 (P-C3N4) which has a rich porous structure, and significantly increased the specific surface area and the number of reaction sites of P-C3N4. Meanwhile, the CoPdNPs were loaded onto P-C3N4 to improve the ECL luminescence property of P-C3N4/K2S2O8 system through acting as a coreaction accelerator. In addition, the ultraviolet-visible (UV-vis) absorption spectra of FeMOFs and small sized CuO nanoparticles (sCuO) showed considerable overlap with the ECL emission spectra of P-C3N4 appropriately. Therefore, FeMOFs with high specific surface area were prepared and well combined with sCuO to effectively dual-quenching the ECL emission of P-C3N4 based on resonance energy transfer. Hence, a new type ECL-RET couple made up of P-C3N4-CoPdNPs (donor) and FeMOFs-sCuO (acceptor) were developed for the first time. A certain amount of P-C3N4-CoPdNPs, Ab1, BSA, NSE were modified layer by layer onto the electrode surface. Then FeMOFs-sCuO-Ab2 bioconjugates was incubated through the immune recognition binding. As a result, a sandwich-type ECL biosensor was manufactured successfully for NSE immunoassay. Under optimal experimental conditions, the limit of detection (LOD) and the limit of quantitation (LOQ) of the prepared ECL sensor for NSE analysis was 20.4 fg mL-1 and 7.99 fg mL-1, respectively, with the relative standard deviation (RSD) of 1.68%. The linear detection range was 0.0000500-100 ng mL-1. The studied immunosensor had satisfactory sensitivity, specificity and reproducibility, manifesting the suggested sensing strategy might offer a good technical means and theoretical basis for the sensitivity analysis of NSE and has a potential application in clinical diagnosis analysis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Reprodutibilidade dos Testes , Porosidade , Medições Luminescentes , Imunoensaio , Nanopartículas/química , Transferência de Energia , Fosfopiruvato Hidratase , Técnicas Eletroquímicas , Nanopartículas Metálicas/química , Limite de Detecção
20.
Front Nutr ; 10: 1117364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814512

RESUMO

To study the anti-tumor effect of Cistanche deserticola Y. Ma, HepG2 cells were treated with 0, 3.5, 10.5, 21, 31.5, and 42 µg/ml of total glycosides (TG) from Cistanche deserticola. The HepG2 cell survival rate and 50% inhibition concentration (IC50) were detected using the CCK-8 method, and the level of reactive oxygen species (ROS) was detected by using a DCFH-DA fluorescence probe. Finally, a Seahorse XFe24 energy analyzer (Agilent, United States) was used to detect cell mitochondrial pressure and glycolytic pressure. The results showed that TG could reduce the survival rate of HepG2 cells and that the IC50 level was 35.28 µg/ml. With increasing TG concentration, the level of ROS showed a concentration-dependent upward trend. Energy metabolism showed that each dose group of TG could significantly decline the mitochondrial respiratory and glycolytic functions of HepG2 cells. In conclusion, TG could significantly inhibit the mitochondrial respiration and glycolysis functions of HepG2 cells, increase the level of ROS, and inhibit cell proliferation. Thus, this experiment pointed out that Cistanche deserticola can be used as a source of anti-cancer foods or drugs in the future. However, further studies on its mechanisms and clinical applications are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...